

MOTION AND MOUTH-OPENING-FREQUENCY OF SALMON IN A STRESS-EXPERIMENT OWITOOLS AP2: VISUAL ANALYSIS

1

16.2.2022 OWITOOLS-Webinar

Christian Schellewald,

Carolyn Rosten, ,Trym Anthonsen Nygård, Jan Henrik Jahren

Overview

- Aim / Background
 - IMS CO2 Experiment
- Visual Analysis
 - Stereo Image Processing / 3D reconstruction
 - Trajectory extraction of the Salmon
 - Mouth-Opening-Frequency
- Results
 - Trajectory Motion-Measure
 - Mouth-Opening-Frequency

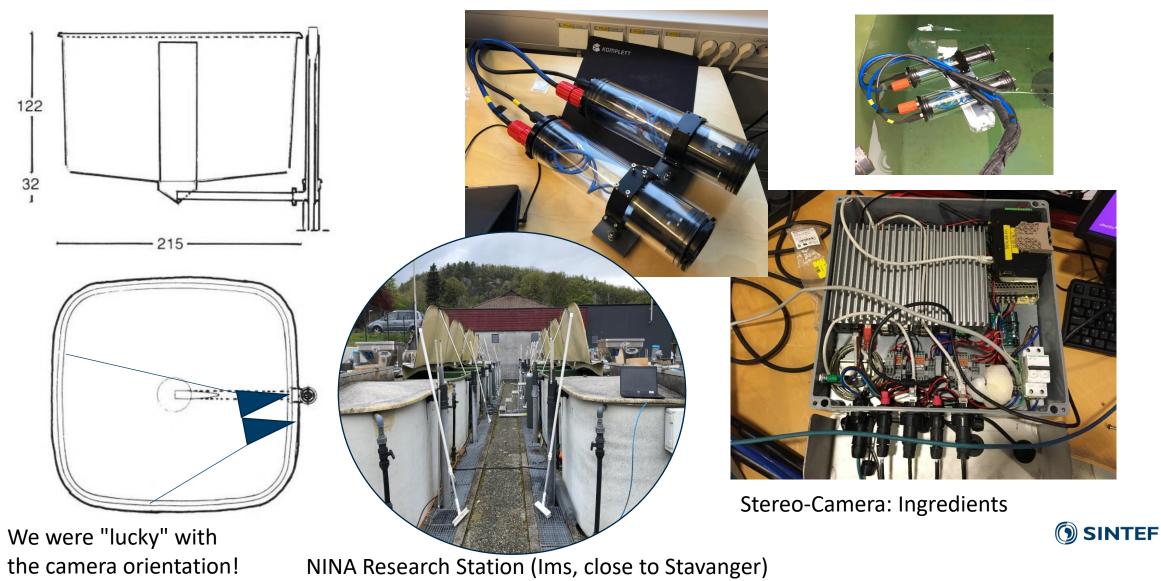
Aim

The main aim within this OWITOOLS subtask is to investigate/verify that selected **non-invasive visual measurements** from salmon videos are suitable to extract information that can be linked to the welfare of the fish.

Focus is on the **mouth-opening-frequency** (breathing) and the fish **motion**.

Background: IMS Experiment (Stereo-camera)

- Stereo-Camera placed in a Tank at IMS (19.5.2021-13.7.2021)
 - Stress Experiment: Increased CO2 concentration 10:20 (for ~6 hours)
 - Recordings scheduled every 15 minutes for 5 minutes
 - Night recordings are too dark/ Variing framerate of the recordings /Bandwidth required an image "cropping" ...



Stereo-Camera within the Tank

5

• GSM-Modem, Computer, Microcontroller, Cameras

Videorecordings

- Hardware:
 - 2 Industry-cameras: Blackfly BFLY-PGE-13E4C
 - Lens: View angle 51 degrees (underwater)
 - Internal harddrives (2x each with 1 Terrabyte) + External Backup-Hard-discs
 → We recorded 690 Gb with video data (~12.5 Gb per day, incl. dark recordings)
 - Video image size: 1280x1024 pixel 24bit (RGB-color)
 - Remote access
- Recordings
 - In day light approx. ~5min recordings (7500 frames)
 - Every quarter of an hour (dark/night videos were removed)
- Videos quality
 - Mostly of good quality (occasionally turbidity + low light)
 - Frame-rates: 18-25 images/s (mostly ~24 images/s)

Visual Analysis

- Data collected with a stereo camera at IMS in a Tank with 6 fish.
- Focus on CO2 stress experiment 8.6.2021
- Visual features:
 - Mouth-Opening-Frequency
 - Motion-Trajectory

SINTEF

Recordings from CO2 Stress Experiment Day

	20210608_ 044504_ 7500fra	20210608_ 044504_ 7500fra	20210608_ 050005_ 7500fra	20210608_ 050005_ 7500fra	20210608_ 051505_ 7500fra	20210608_ 051505_ 7500fra	20210608_ 053004_ 7500fra	20210608_ 053004_ 7500fra	20210608_ 054505_ 7500fra	20210608_ 054505_ 7500fra	20210608 060005 7500fra	20210608_ 060005_ 7500fra	20210608_ 061504_ 7500fra	20210608_ 061504_ 7500fra	20210608_ 063005_ 7500fra	20210608_ 063005_ 7500fra	20210608_ 064504_ 7500fra	•	8.6.20
20210608_ 064504_ 7500fra	20210608_ 070005_ 7500fra	20210608_ 070005_ 7500fra	20210608_ 071505_ 7500fra	20210608_ 071505_ 7500fra	20210608_ 073004_ 7500fra	20210608_ 073004_ 7500fra	20210608_ 074505_ 7500fra	20210608_ 074505_ 7500fra	20210608_ 080005_ 7500fra	20210608_ 080005_ 7500fra	20210608_ 081504_ 7500fra	20210608_ 081504_ 7500fra	20210608_ 083005_ 7500fra	20210608_ 083005_ 7500fra	20210608_ 084504_ 7500fra	20210608_ 084504_ 7500fra	20210608_ 090005_ 7500fra	•	Bright
20210608_ 090005_ 7500fra	20210608_ 091504_ 7500fra	20210608_ 091504_ 7500fra	20210608_ 093004_ 7500fra	20210608_ 093004_ 7500fra	20210608_ 094505_ 7500fra	20210608_ 094505_ 7500fra	20210608_ 100005_ 7500fra	20210608_ 100005_ 7500fra	20210608_ 101505_ 7500fra	20210608_ 101505_ 7500fra	20210608_ 103004_ 7500fra	20210608_ 103004_ 7500fra	20210608_ 104504_ 7500fra	20210608_ 104504_ 7500fra	20210608_ 110005_ 7500fra	20210608_ 110005_ 7500fra	20210608_ 111504_ 7500fra	•	=> ~6
20210608_ 111504_ 7500fra	20210608_ 113005_ 7500fra	20210608_ 113005_ 7500fra	20210608_ 114504_ 7500fra	20210608_ 114504_ 7500fra	20210608_ 120005_ 7500fra	20210608_ 120005_ 7500fra	20210608_ 121505_ 7500fra	20210608_ 121505_ 7500fra	20210608_ 123005_ 7500fra	20210608_ 123005_ 7500fra	20210608_ 124504_ 7500fra	20210608_ 124504_ 7500fra	20210608_ 130005_ 7500fra	20210608_ 130005_ 7500fra	20210608_ 131505_ 7500fra	20210608_ 131505_ 7500fra	20210608_ 133005_ 7500fra	•	6 GB
20210608_ 133005_ 7500fra	20210608_ 134505_ 7500fra	20210608_ 134505_ 7500fra	20210608_ 140004_ 7500fra	20210608_ 140004_ 7500fra	20210608_ 141504_ 7500fra	20210608_ 141504_ 7500fra	20210608_ 143005_ 7500fra	20210608_ 143005_ 7500fra	20210608_ 144505_ 7500fra	20210608_ 144505_ 7500fra	20210608_ 150005_ 7500fra	20210608_ 150005_ 7500fra	20210608_ 151504_ 7500fra	20210608_ 151504_ 7500fra	20210608_ 153005_ 7500fra	20210608_ 153005_ 7500fra	20210608_ 154505_ 7500fra		
20210608_ 154505_ 7500fra	20210608_ 160005_ 7500fra	20210608_ 160005_ 7500fra	20210608_ 161505_ 7500fra	20210608_ 161505_ 7500fra	20210608_ 163004_ 7500fra	20210608_ 163004_ 7500fra	20210608_ 164504_ 7500fra	20210608_ 164504_ 7500fra	20210608_ 170004_ 7500fra	20210608_ 170004_ 7500fra	20210608_ 171504_ 7500fra	20210608_ 171504_ 7500fra	20210608_ 173005_ 7500fra	20210608_ 173005_ 7500fra	20210608_ 174504_ 7500fra	20210608_ 174504_ 7500fra	20210608_ 180005_ 7500fra		
20210608_ 180005_ 7500fra	20210608_ 181505_ 7500fra	20210608_ 181505_ 7500fra	20210608_ 183005_ 7500fra	20210608_ 183005_ 7500fra	20210608_ 184505_ 7500fra	20210608_ 184505_ 7500fra	20210608_ 190004_ 7500fra	20210608_ 190004_ 7500fra	20210608_ 191504_ 7500fra	20210608_ 191504_ 7500fra	20210608_ 193005_ 7500fra	20210608_ 193005_ 7500fra	20210608_ 194505_ 7500fra	20210608_ 194505_ 7500fra	20210608_ 200005_ 7500fra	20210608_ 200005_ 7500fra	20210608_ 201505_ 7500fra		
20210608_ 201505_ 7500fra	20210608_ 203005_ 7500fra	20210608_ 203005_ 7500fra	20210608_ 204504_ 7500fra	20210608_ 204504_ 7500fra	20210608_ 210004_ 7500fra	20210608_ 210004_ 7500fra	20210608_ 211505_ 7500fra	20210608_ 211505_ 7500fra	20210608_ 213005_ 7500fra	20210608_ 213005_ 7500fra	20210608_ 214505_ 7500fra	20210608_ 214505_ 7500fra	20210608_ 220004_ 7500fra	20210608_ 220004_ 7500fra	20210608_ 221504_ 7500fra	20210608_ 221504_ 7500fra	20210608_ 223004_ 7500fra		

224505

6.2021

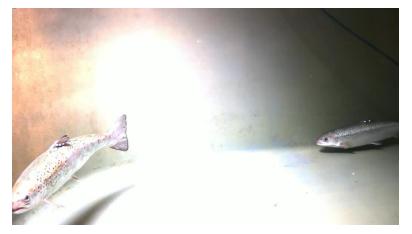
right enough: 05:45-21:15

~62x2 Stereo videos

```
Video processing => "Big Data"
```

Example Recordings

20.5.2021 18:18


20.6.2021 13:45

13.7.2021 07:00

() SINTEF

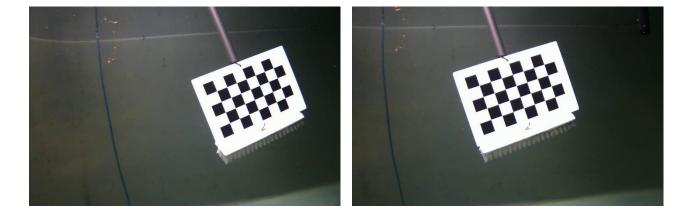
Challenges

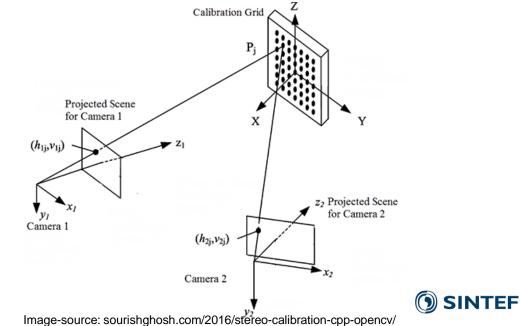
22.5.2021 13:45

27.5.2021 21:45

Noise, Varying lighting conditions, Occlusion, Reflections, Non-rigid objects, Varying framerates ...

8.6.2021 10:15 + 10:30 + 15:30

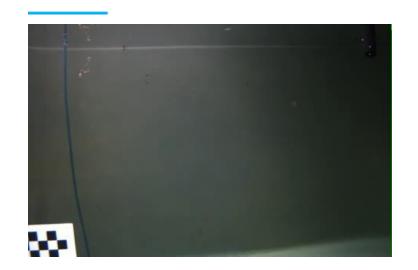




Stereo Image Processing

Calibration of the camera-setup

- Checkerboard (underwater!)
- Internal camera parameters
 - focal length/view-angle
- External camera parameters
 - Baseline/camera distance, relative rotation

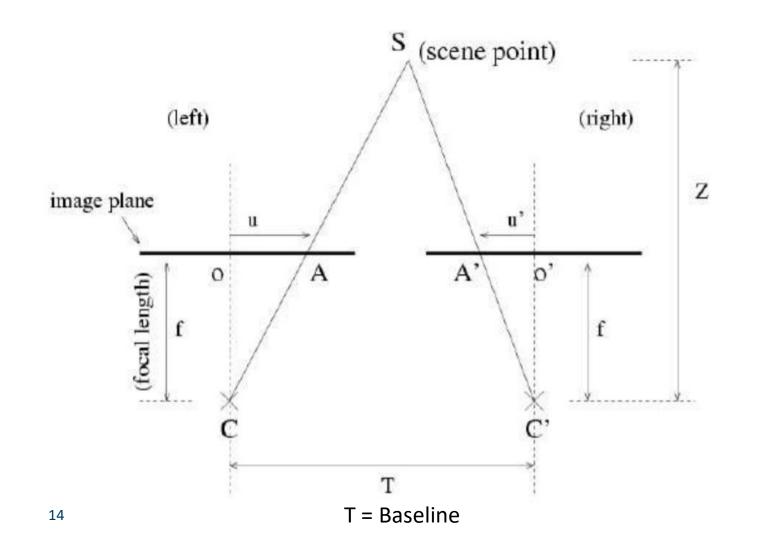


=> Information about the geometric camera setup:

Field of view: ~51.4 degrees Baseline: 15.03 cm

Stereo-Camera Calibration

- Calibration pattern of know size: (square 3.11 cm x 3.11 cm)
- Calibrate single cameras
 => internal camera parameters
- Calibrate stereo setup
 - => external camera parameters



Rectification

- Knowing the geometric setup (external parameters) and the camera parameters (intrinsic parameters) one can "rectify" the images.
- => This transforms the images into "ideal" stereo-camera setup

Triangulation

"ideal" stereo-camera setup
 => parallel cameras

() SINTEF

Trajectory extraction of the Salmon

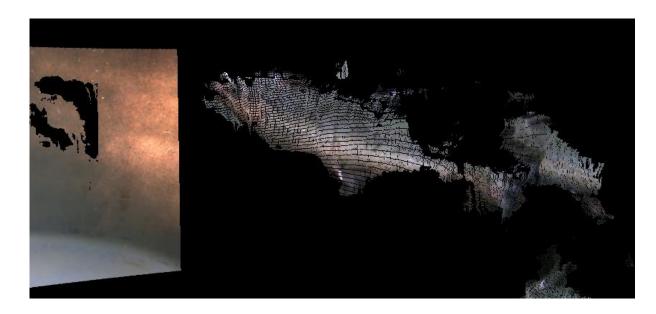
Method development

- Stereo-camera allows to extract metric measurements in 3D (i.e. length in meter, cm, mm)
- Main steps: Camera calibration, "Rectification", Triangulation

Calibration "checkerboard" Length of the calibration board: ~20x30 cm

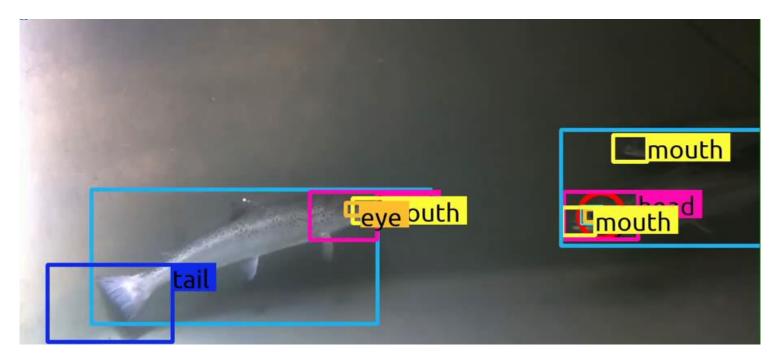
Rectification: Corresponding features like the eye at same y-coordinate

Metric Data Extraction


~57 cm

20 cm (20.4 cm measured)

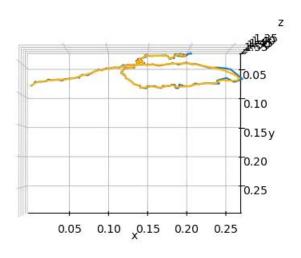
3D representations, Pointcloud, 3D-Glasses

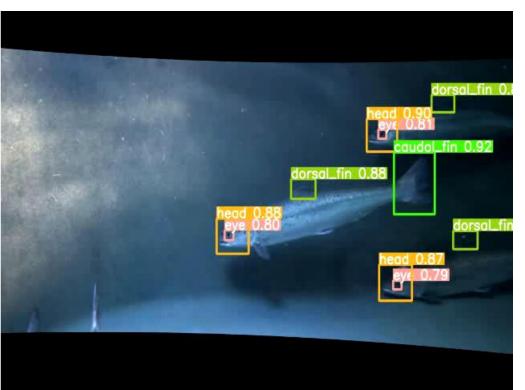


Computing a correct dense pointcloud (reconstruction) is still challenging..

Motion-Trajectory based on the eye

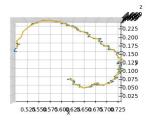
- Exploitation and development of Computer Vision Methods to detect and track the eye in the left and right video
 - Motion-Trajectory can then reconstructed

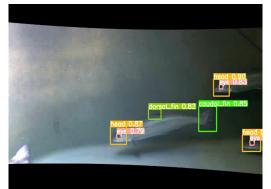


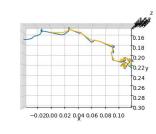

Detections of Salmon parts along with tracking them allows the analysis of motion details of the salmon.

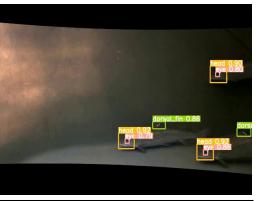
Trajectory extraction of the Salmon

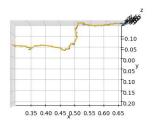
- Following the eye of the salmon in the stereo-image-pair we can compute the trajectory of the eye/fish.
- Requires a robust detection of the eye (Machine Learning exploiting for example Deep Learning)



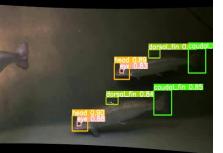



() SINTEF


Example of an extracted 3D trajectory of a single salmon (Salmon in the centre)

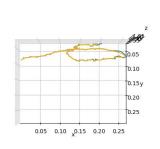

Many Trajectories ...





1 0.15

0.20

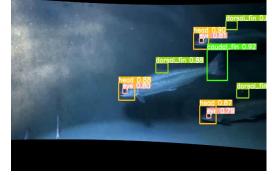

0.25

0.30

0.35

0.40

0.66 0.62 0.64 0.66 0.68

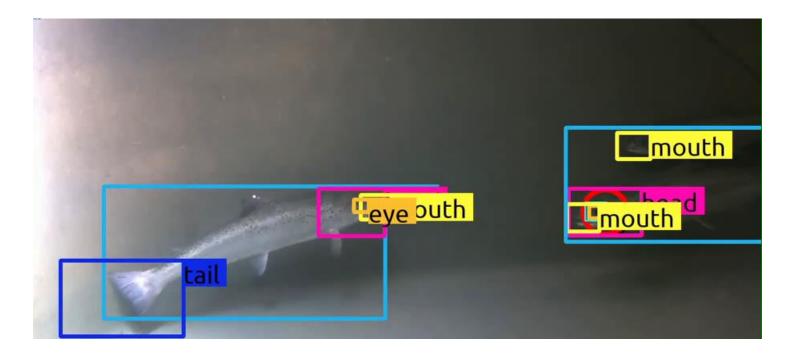

-0.12

±0.10

y -0.08

-0.06

±0.04



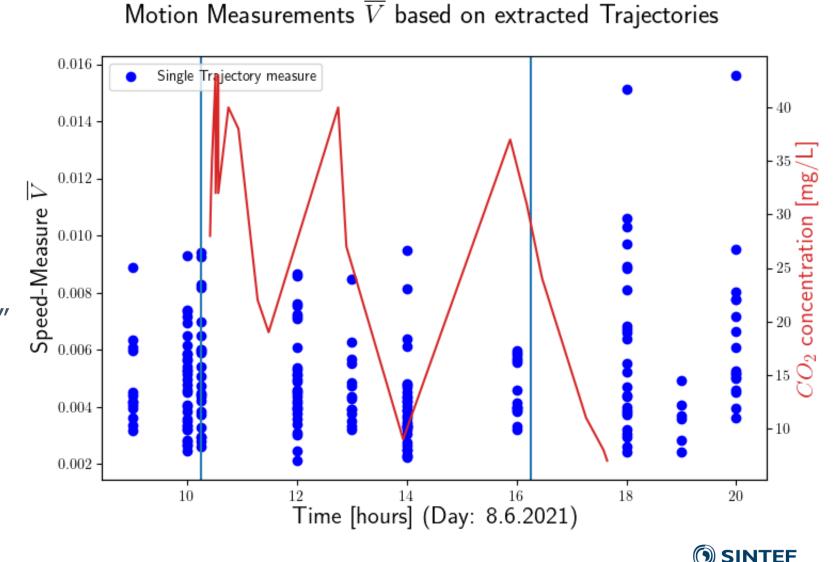
Mouth Motion Analysis

• Exploiting Machine Learning Algorithms and Computer Vision we can track the heads of the salmon for further analysis !

Mouth Motion Analysis

 Good visual conditions allow an automated extraction of the Mouth-Opening-Frequency

"Difficult scenes": Small motion Large orientation changes



Synergy with NFR project INDISAL (282423)

Results: Trajectory Motion-Measure CO2

- Observations:
- Current "motion measures" show no strong correlation to the CO2 levels.
- Potential Explanations
 - Bayes towards "stationary" fish-trajectories. (we miss relevant fish trajectories)
 - Accuracy in Z-direction is highly noisy.

Results: Mouth-Opening-Frequency CO2

- Observations:
 - Increased/Decreased Mouth-Opening-Frequency agrees with increased/decreased carbon dioxide levels.
- Highly likely that we can observe the induced stress

Single Salmon measure 1.6 -40Mouth-Opening-Frequency [1/s]30entration 1.2 -25conce 201.0- 15 💍 0.8 -- 10 122010 141618 Time [h] (Measurement day: 8.6.2021) **SINIEF**

Mouth Opening Frequency (CO_2 Experiment)

We will learn more through a new FHF project BIORELEVANS (901736)

Discussion

• Motion Extraction Approach:

- Used Approach: Trace the fish eye in stereo videos to get a 3D trajectory and relative speed measurements
- Trajectory relative to the camera is extracted (speed measurements need water speed too.)
- Currently inconclusive results regarding CO2 stressor, but the technique allows to determine fish motion (speed and direction).
- Mouth Opening Frequency measurements:
 - Works automated in "ideal" conditions (lighting, opening-motion, distance to camera).
 - The mouth-opening frequency shows a correlation with the CO2 concentration stressor.
 - Measures a biological status variable with meaning for welfare (Needs still a better understanding of all factors that influence the breathing [i.e. Temperature, O2 concentration, Fish-size, etc.])
- More "Visual" Information may be extracted !!!

SINTEF

– Example: Size measurements and tail motion frequency are promising candidates.

Teknologi for et bedre samfunn